Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 151(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602508

RESUMO

The skull roof, or calvaria, is comprised of interlocking plates of bones that encase the brain. Separating these bones are fibrous sutures that permit growth. Currently, we do not understand the instructions for directional growth of the calvaria, a process which is error-prone and can lead to skeletal deficiencies or premature suture fusion (craniosynostosis, CS). Here, we identify graded expression of fibronectin (FN1) in the mouse embryonic cranial mesenchyme (CM) that precedes the apical expansion of calvaria. Conditional deletion of Fn1 or Wasl leads to diminished frontal bone expansion by altering cell shape and focal actin enrichment, respectively, suggesting defective migration of calvarial progenitors. Interestingly, Fn1 mutants have premature fusion of coronal sutures. Consistently, syndromic forms of CS in humans exhibit dysregulated FN1 expression, and we also find FN1 expression altered in a mouse CS model of Apert syndrome. These data support a model of FN1 as a directional substrate for calvarial osteoblast migration that may be a common mechanism underlying many cranial disorders of disparate genetic etiologies.


Assuntos
Fibronectinas , Nascimento Prematuro , Crânio , Animais , Feminino , Humanos , Camundongos , Sinais (Psicologia) , Modelos Animais de Doenças , Fibronectinas/metabolismo , Osteoblastos , Crânio/citologia , Crânio/crescimento & desenvolvimento , Crânio/metabolismo , Suturas
2.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38405902

RESUMO

Osteogenic differentiation is essential for bone development and metabolism, but the underlying gene regulatory networks have not been well investigated. We differentiated mesenchymal stem cells, derived from 20 human induced pluripotent stem cell lines, into preosteoblasts and osteoblasts, and performed systematic RNA-seq analyses of 60 samples for differential gene expression. We noted a highly significant correlation in expression patterns and genomic proximity among transcription factor (TF) and long noncoding RNA (lncRNA) genes. We identified TF-TF regulatory networks, regulatory roles of lncRNAs on their neighboring coding genes for TFs and splicing factors, and differential splicing of TF, lncRNA, and splicing factor genes. TF-TF regulatory and gene co-expression network analyses suggested an inhibitory role of TF KLF16 in osteogenic differentiation. We demonstrate that in vitro overexpression of human KLF16 inhibits osteogenic differentiation and mineralization, and in vivo Klf16+/- mice exhibit increased bone mineral density, trabecular number, and cortical bone area. Thus, our model system highlights the regulatory complexity of osteogenic differentiation and identifies novel osteogenic genes.

3.
bioRxiv ; 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36711975

RESUMO

The skull roof, or calvaria, is comprised of interlocking plates of bone. Premature suture fusion (craniosynostosis, CS) or persistent fontanelles are common defects in calvarial development. Although some of the genetic causes of these disorders are known, we lack an understanding of the instructions directing the growth and migration of progenitors of these bones, which may affect the suture patency. Here, we identify graded expression of Fibronectin (FN1) protein in the mouse embryonic cranial mesenchyme (CM) that precedes the apical expansion of calvarial osteoblasts. Syndromic forms of CS exhibit dysregulated FN1 expression, and we find FN1 expression is altered in a mouse CS model as well. Conditional deletion of Fn1 in CM causes diminished frontal bone expansion by altering cell polarity and shape. To address how osteoprogenitors interact with the observed FN1 prepattern, we conditionally ablate Wasl/N-Wasp to disrupt F-actin junctions in migrating cells, impacting lamellipodia and cell-matrix interaction. Neural crest-targeted deletion of Wasl results in a diminished actin network and reduced expansion of frontal bone primordia similar to conditional Fn1 mutants. Interestingly, defective calvaria formation in both the Fn1 and Wasl mutants occurs without a significant change in proliferation, survival, or osteogenesis. Finally, we find that CM-restricted Fn1 deletion leads to premature fusion of coronal sutures. These data support a model of FN1 as a directional substrate for calvarial osteoblast migration that may be a common mechanism underlying many cranial disorders of disparate genetic etiologies.

4.
J Dev Biol ; 10(3)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35997397

RESUMO

Apert syndrome is a rare genetic disorder characterized by craniosynostosis, midface retrusion, and limb anomalies. Cleft palate occurs in a subset of Apert syndrome patients. Although the genetic causes underlying Apert syndrome have been identified, the downstream signaling pathways and cellular mechanisms responsible for cleft palate are still elusive. To find clues for the pathogenic mechanisms of palatal defects in Apert syndrome, we review the clinical characteristics of the palate in cases of Apert syndrome, the palatal phenotypes in mouse models, and the potential signaling mechanisms involved in palatal defects. In Apert syndrome patients, cleft of the soft palate is more frequent than of the hard palate. The length of the hard palate is decreased. Cleft palate is associated most commonly with the S252W variant of FGFR2. In addition to cleft palate, high-arched palate, lateral palatal swelling, or bifid uvula are common in Apert syndrome patients. Mouse models of Apert syndrome display palatal defects, providing valuable tools to understand the underlying mechanisms. The mutations in FGFR2 causing Apert syndrome may change a signaling network in epithelial-mesenchymal interactions during palatogenesis. Understanding the pathogenic mechanisms of palatal defects in Apert syndrome may shed light on potential novel therapeutic solutions.

5.
Dev Dyn ; 251(10): 1684-1697, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35582939

RESUMO

BACKGROUND: Major cell-to-cell signaling pathways, such as the fibroblast growth factors and their four receptors (FGF/FGFR), are conserved across a variety of animal forms. FGF/FGFRs are necessary to produce several "vertebrate-specific" structures, including the vertebrate head. Here, we examine the effects of the FGFR2 S252W mutation associated with Apert syndrome on patterns of cranial integration. Our data comprise micro-computed tomography images of newborn mouse skulls, bred to express the Fgfr2 S252W mutation exclusively in either neural crest or mesoderm-derived tissues, and mice that express the Fgfr2 S252W mutation ubiquitously. RESULTS: Procrustes-based methods and partial least squares analysis were used to analyze craniofacial integration patterns. We found that deviations in the direction and degree of integrated shape change across the mouse models used in our study were potentially driven by the modular variation generated by differing expression of the Fgfr2 mutation in cranial tissues. CONCLUSIONS: Our overall results demonstrate that covariation patterns can be biased by the spatial distribution and magnitude of variation produced by underlying developmental-genetic mechanisms that often impact the phenotype in disproportionate ways.


Assuntos
Acrocefalossindactilia , Acrocefalossindactilia/genética , Animais , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/metabolismo , Camundongos , Mutação , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Crânio/diagnóstico por imagem , Crânio/metabolismo , Microtomografia por Raio-X
6.
Nat Commun ; 12(1): 7132, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880220

RESUMO

Craniofacial development depends on formation and maintenance of sutures between bones of the skull. In sutures, growth occurs at osteogenic fronts along the edge of each bone, and suture mesenchyme separates adjacent bones. Here, we perform single-cell RNA-seq analysis of the embryonic, wild type murine coronal suture to define its population structure. Seven populations at E16.5 and nine at E18.5 comprise the suture mesenchyme, osteogenic cells, and associated populations. Expression of Hhip, an inhibitor of hedgehog signaling, marks a mesenchymal population distinct from those of other neurocranial sutures. Tracing of the neonatal Hhip-expressing population shows that descendant cells persist in the coronal suture and contribute to calvarial bone growth. In Hhip-/- coronal sutures at E18.5, the osteogenic fronts are closely apposed and the suture mesenchyme is depleted with increased hedgehog signaling compared to those of the wild type. Collectively, these data demonstrate that Hhip is required for normal coronal suture development.


Assuntos
Proteínas de Transporte/metabolismo , Suturas Cranianas/crescimento & desenvolvimento , Proteínas Hedgehog/metabolismo , Glicoproteínas de Membrana/metabolismo , Análise de Célula Única/métodos , Animais , Desenvolvimento Ósseo , Proteínas de Transporte/genética , Proliferação de Células , Suturas Cranianas/patologia , Craniossinostoses , DNA Topoisomerases Tipo II , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Glicoproteínas de Membrana/genética , Mesoderma , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/genética , Osteogênese/fisiologia , Fenótipo , Proteínas de Ligação a Poli-ADP-Ribose , Análise de Sequência de RNA , Transdução de Sinais , Crânio , Transcriptoma
7.
Laryngoscope ; 131(4): E1349-E1356, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32886384

RESUMO

OBJECTIVES: To characterize tracheal cartilage morphology in mouse models of fibroblast growth factor receptor (Fgfr2)-related craniosynostosis syndromes. To establish relationships between specific Fgfr2 mutations and tracheal cartilaginous sleeve (TCS) phenotypes in these mouse models. METHODS: Postnatal day 0 knock-in mouse lines with disease-specific genetic variations in the Fgfr2 gene (Fgfr2C342Y/C342Y , Fgfr2C342Y/+ , Fgfr2+/Y394C , Fgfr2+/S252W , and Fgfr2+/P253R ) as well as line-specific controls were utilized. Tracheal cartilage morphology as measured by gross analyses, microcomputed tomography (µCT), and histopathology were compared using Chi-squared and single-factor analysis of variance statistical tests. RESULTS: A greater proportion of rings per trachea were abnormal in Fgfr2C342Y/+ tracheas (63%) than Fgfr2+/S252W (17%), Fgfr2+/P253R (17%), Fgfr2+/Y394C (12%), and controls (10%) (P < .001 for each vs. Fgfr2C342Y/+ ). TCS segments were found only in Fgfr2C342Y/C342Y (100%) and Fgfr2C342Y/+ (72%) tracheas. Cricoid and first-tracheal ring fusion was noted in all Fgfr2C342Y/C342Y and 94% of Fgfr2C342Y/+ samples. The Fgfr2C342Y/C342Y and Fgfr2C342Y/+ groups were found to have greater areas and volumes of cartilage than other lines on gross analysis and µCT. Histologic analyses confirmed TCS among the Fgfr2C342Y/C342Y and Fgfr2C342Y/+ groups, without appreciable differences in cartilage morphology, cell size, or density; no histologic differences were observed among other Fgfr2 lines compared to controls. CONCLUSION: This study found TCS phenotypes only in the Fgfr2C342Y mouse lines. These lines also had increased tracheal cartilage compared to other mutant lines and controls. These data support further study of the Fgfr2 mouse lines and the investigation of other Fgfr2 variants to better understand their role in tracheal development and TCS formation. LEVEL OF EVIDENCE: NA Laryngoscope, 131:E1349-E1356, 2021.


Assuntos
Estudos de Associação Genética/métodos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Traqueia/anormalidades , Doenças da Traqueia/genética , Acantose Nigricans/genética , Acrocefalossindactilia/genética , Animais , Cartilagem/patologia , Disostose Craniofacial/genética , Craniossinostoses/genética , Modelos Animais de Doenças , Orelha/anormalidades , Humanos , Camundongos , Mutação , Fenótipo , Dermatoses do Couro Cabeludo/genética , Anormalidades da Pele/genética , Traqueia/embriologia , Traqueia/patologia , Doenças da Traqueia/diagnóstico , Doenças da Traqueia/patologia , Microtomografia por Raio-X/métodos
8.
J Dev Biol ; 8(4)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291480

RESUMO

The phenotype currently accepted as Pierre Robin syndrome/sequence/anomalad/complex (PR) is characterized by mandibular dysmorphology, glossoptosis, respiratory obstruction, and in some cases, cleft palate. A causative sequence of developmental events is hypothesized for PR, but few clear causal relationships between discovered genetic variants, dysregulated gene expression, precise cellular processes, pathogenesis, and PR-associated anomalies are documented. This review presents the current understanding of PR phenotypes, the proposed pathogenetic processes underlying them, select genes associated with PR, and available animal models that could be used to better understand the genetic basis and phenotypic variation of PR.

9.
Development ; 147(18)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958507

RESUMO

The FaceBase Consortium was established by the National Institute of Dental and Craniofacial Research in 2009 as a 'big data' resource for the craniofacial research community. Over the past decade, researchers have deposited hundreds of annotated and curated datasets on both normal and disordered craniofacial development in FaceBase, all freely available to the research community on the FaceBase Hub website. The Hub has developed numerous visualization and analysis tools designed to promote integration of multidisciplinary data while remaining dedicated to the FAIR principles of data management (findability, accessibility, interoperability and reusability) and providing a faceted search infrastructure for locating desired data efficiently. Summaries of the datasets generated by the FaceBase projects from 2014 to 2019 are provided here. FaceBase 3 now welcomes contributions of data on craniofacial and dental development in humans, model organisms and cell lines. Collectively, the FaceBase Consortium, along with other NIH-supported data resources, provide a continuously growing, dynamic and current resource for the scientific community while improving data reproducibility and fulfilling data sharing requirements.


Assuntos
Pesquisa em Odontologia/métodos , Ossos Faciais/fisiologia , Crânio/fisiologia , Animais , Bases de Dados Factuais , Humanos , Reprodutibilidade dos Testes , Pesquisadores
10.
Cell Rep ; 32(1): 107871, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32640236

RESUMO

Craniofacial abnormalities often involve sutures, the growth centers of the skull. To characterize the organization and processes governing their development, we profile the murine frontal suture, a model for sutural growth and fusion, at the tissue- and single-cell level on embryonic days (E)16.5 and E18.5. For the wild-type suture, bulk RNA sequencing (RNA-seq) analysis identifies mesenchyme-, osteogenic front-, and stage-enriched genes and biological processes, as well as alternative splicing events modifying the extracellular matrix. Single-cell RNA-seq analysis distinguishes multiple subpopulations, of which five define a mesenchyme-osteoblast differentiation trajectory and show variation along the anteroposterior axis. Similar analyses of in vivo mouse models of impaired frontal suturogenesis in Saethre-Chotzen and Apert syndromes, Twist1+/- and Fgfr2+/S252W, demonstrate distinct transcriptional changes involving angiogenesis and ribogenesis, respectively. Co-expression network analysis reveals gene expression modules from which we validate key driver genes regulating osteoblast differentiation. Our study provides a global approach to gain insights into suturogenesis.


Assuntos
Suturas Cranianas/embriologia , Suturas Cranianas/metabolismo , Redes Reguladoras de Genes , Transcriptoma/genética , Processamento Alternativo/genética , Animais , Diferenciação Celular , Linhagem Celular , Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mesoderma/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Osteogênese/genética , RNA-Seq , Análise de Célula Única , Fatores de Tempo , Transcrição Gênica
11.
J Vis Exp ; (154)2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31904019

RESUMO

Laser capture microdissection (LCM) is a powerful tool to isolate specific cell types or regions of interest from heterogeneous tissues. The cellular and molecular complexity of skeletal elements increases with development. Tissue heterogeneity, such as at the interface of cartilaginous and osseous elements with each other or with surrounding tissues, is one obstacle to the study of developing cartilage and bone. Our protocol provides a rapid method of tissue processing and isolation of cartilage and bone that yields high quality RNA for gene expression analysis. Fresh frozen tissues of mouse embryos are sectioned and brief cresyl violet staining is used to visualize cartilage and bone with colors distinct from surrounding tissues. Slides are then rapidly dehydrated, and cartilage and bone are isolated subsequently by LCM. The minimization of exposure to aqueous solutions during this process maintains RNA integrity. Mouse Meckel's cartilage and mandibular bone at E16.5 were successfully collected and gene expression analysis showed differential expression of marker genes for osteoblasts, osteocytes, osteoclasts, and chondrocytes. High quality RNA was also isolated from a range of tissues and embryonic ages. This protocol details sample preparation for LCM including cryoembedding, sectioning, staining and dehydrating fresh frozen tissues, and precise isolation of cartilage and bone by LCM resulting in high quality RNA for transcriptomic analysis.


Assuntos
Osso e Ossos/metabolismo , Cartilagem/metabolismo , Perfilação da Expressão Gênica/métodos , Microdissecção e Captura a Laser/métodos , Animais , Osso e Ossos/embriologia , Cartilagem/embriologia , Camundongos
12.
Development ; 145(19)2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30228104

RESUMO

Midface dysgenesis is a feature of more than 200 genetic conditions in which upper airway anomalies frequently cause respiratory distress, but its etiology is poorly understood. Mouse models of Apert and Crouzon craniosynostosis syndromes exhibit midface dysgenesis similar to the human conditions. They carry activating mutations of Fgfr2, which is expressed in multiple craniofacial tissues during development. Magnetic resonance microscopy of three mouse models of Apert and Crouzon syndromes revealed decreased nasal passage volume in all models at birth. Histological analysis suggested overgrowth of the nasal cartilage in the two Apert syndrome mouse models. We used tissue-specific gene expression and transcriptome analysis to further dissect the structural, cellular and molecular alterations underlying midface and upper airway dysgenesis in Apert Fgfr2+/S252W mutants. Cartilage thickened progressively during embryogenesis because of increased chondrocyte proliferation in the presence of Fgf2 Oral epithelium expression of mutant Fgfr2, which resulted in a distinctive nasal septal fusion defect, and premature facial suture fusion contributed to the overall dysmorphology. Midface dysgenesis in Fgfr2-related craniosynostosis is a complex phenotype arising from the combined effects of aberrant signaling in multiple craniofacial tissues.


Assuntos
Ciclo Celular , Craniossinostoses/embriologia , Face/anormalidades , Especificidade de Órgãos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Anormalidades do Sistema Respiratório/embriologia , Anormalidades do Sistema Respiratório/patologia , Acrocefalossindactilia/patologia , Animais , Cartilagem/patologia , Proliferação de Células , Condrócitos/patologia , Suturas Cranianas/patologia , Disostose Craniofacial/embriologia , Disostose Craniofacial/patologia , Craniossinostoses/patologia , Modelos Animais de Doenças , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/patologia , Face/embriologia , Face/patologia , Regulação da Expressão Gênica no Desenvolvimento , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Nariz/anormalidades , Nariz/embriologia , Nariz/patologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética
13.
PLoS One ; 13(7): e0201492, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30048539

RESUMO

Activating mutations of fibroblast growth factor receptors (FGFRs) are a major cause of skeletal dysplasias, and thus they are potential targets for pharmaceutical intervention. BMN 111, a C-type natriuretic peptide analog, inhibits FGFR signaling at the level of the RAF1 kinase through natriuretic peptide receptor 2 (NPR2) and has been shown to lengthen the long bones and improve skull morphology in the Fgfr3Y367C/+ thanatophoric dysplasia mouse model. Here we report the effects of BMN 111 in treating craniosynostosis and aberrant skull morphology in the Fgfr2cC342Y/+ Crouzon syndrome mouse model. We first demonstrated that NPR2 is expressed in the murine coronal suture and spheno-occipital synchondrosis in the newborn period. We then gave Fgfr2cC342Y/+ and Fgfr2c+/+ (WT) mice once-daily injections of either vehicle or reported therapeutic levels of BMN 111 between post-natal days 3 and 31. Changes in skeletal morphology, including suture patency, skull dimensions, and long bone length, were assessed by micro-computed tomography. Although BMN 111 treatment significantly increased long bone growth in both WT and mutant mice, skull dimensions and suture patency generally were not significantly affected. A small but significant increase in the relative length of the anterior cranial base was observed. Our results indicate that the differential effects of BMN 111 in treating various skeletal dysplasias may depend on the process of bone formation targeted (endochondral or intramembranous), the specific FGFR mutated, and/or the specific signaling pathway changes due to a given mutation.


Assuntos
Disostose Craniofacial/tratamento farmacológico , Craniossinostoses/tratamento farmacológico , Peptídeo Natriurético Tipo C/análogos & derivados , Animais , Animais Recém-Nascidos , Disostose Craniofacial/genética , Disostose Craniofacial/patologia , Craniossinostoses/genética , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Peptídeo Natriurético Tipo C/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Resultado do Tratamento
14.
Development ; 143(14): 2677-88, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27287806

RESUMO

The FaceBase Consortium, funded by the National Institute of Dental and Craniofacial Research, National Institutes of Health, is designed to accelerate understanding of craniofacial developmental biology by generating comprehensive data resources to empower the research community, exploring high-throughput technology, fostering new scientific collaborations among researchers and human/computer interactions, facilitating hypothesis-driven research and translating science into improved health care to benefit patients. The resources generated by the FaceBase projects include a number of dynamic imaging modalities, genome-wide association studies, software tools for analyzing human facial abnormalities, detailed phenotyping, anatomical and molecular atlases, global and specific gene expression patterns, and transcriptional profiling over the course of embryonic and postnatal development in animal models and humans. The integrated data visualization tools, faceted search infrastructure, and curation provided by the FaceBase Hub offer flexible and intuitive ways to interact with these multidisciplinary data. In parallel, the datasets also offer unique opportunities for new collaborations and training for researchers coming into the field of craniofacial studies. Here, we highlight the focus of each spoke project and the integration of datasets contributed by the spokes to facilitate craniofacial research.


Assuntos
Bases de Dados Factuais , Face/embriologia , Pesquisadores , Crânio/embriologia , Animais , Imunoprecipitação da Cromatina , Biologia Computacional , Genômica , Humanos , Camundongos , Modelos Animais , Peixe-Zebra
15.
Gene Expr Patterns ; 17(1): 16-25, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25511173

RESUMO

Sutures, where neighboring craniofacial bones are separated by undifferentiated mesenchyme, are major growth sites during craniofacial development. Pathologic fusion of bones within sutures occurs in a wide variety of craniosynostosis conditions and can result in dysmorphic craniofacial growth and secondary neurologic deficits. Our knowledge of the genes involved in suture formation is poor. Here we describe the novel expression pattern of the BCL11B transcription factor protein during murine embryonic craniofacial bone formation. We examined BCL11B protein expression at E14.5, E16.5, and E18.5 in 14 major craniofacial sutures of C57BL/6J mice. We found BCL11B expression to be associated with all intramembranous craniofacial bones examined. The most striking aspects of BCL11B expression were its high levels in suture mesenchyme and increasingly complementary expression with RUNX2 in differentiating osteoblasts during development. BCL11B was also expressed in mesenchyme at the non-sutural edges of intramembranous bones. No expression was seen in osteoblasts involved in endochondral ossification of the cartilaginous cranial base. BCL11B is expressed to potentially regulate the transition of mesenchymal differentiation and suture formation within craniofacial intramembranous bone.


Assuntos
Mesoderma/metabolismo , Osteogênese , Proteínas Repressoras/metabolismo , Crânio/embriologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Camundongos Endogâmicos C57BL , Crânio/citologia , Crânio/metabolismo
16.
Bone ; 63: 101-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24632501

RESUMO

Bones of the craniofacial skeleton are derived from two distinct cell lineages, cranial neural crest and mesoderm, and articulate at sutures and synchondroses which represent major bone growth sites. Premature fusion of cranial suture(s) is associated with craniofacial dysmorphogenesis caused in part by alteration in the growth potential at sutures and can occur as an isolated birth defect or as part of a syndrome, such as Apert syndrome. Conditional expression of the Apert FGFR2 S252W mutation in cells derived from mesoderm was previously shown to be necessary and sufficient to cause coronal craniosynostosis. Here we used micro computed tomography images of mice expressing the Apert mutation constitutively in either mesoderm- or neural crest-derived cells to quantify craniofacial shape variation and suture fusion patterns, and to identify shape changes in craniofacial bones derived from the lineage not expressing the mutation, referred to here as secondary shape changes. Our results show that at postnatal day 0: (i) conditional expression of the FGFR2 S252W mutation in neural crest-derived tissues causes a more severe craniofacial phenotype than when expressed in mesoderm-derived tissues; and (ii) both mesoderm- and neural crest-specific mouse models display secondary shape changes. We also show that premature suture fusion is not necessarily dependent on the expression of the FGFR2 S252W mutation in the sutural mesenchyme. More specifically, it appears that suture fusion patterns in both mouse models are suture-specific resulting from a complex combination of the influence of primary abnormalities of biogenesis or signaling within the sutures, and timing.


Assuntos
Mesoderma/embriologia , Crista Neural/embriologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Ossos Faciais/embriologia , Camundongos , Mutação , Crânio/embriologia
17.
Dis Model Mech ; 6(3): 768-79, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23519026

RESUMO

Apert syndrome is a congenital disorder characterized by severe skull malformations and caused by one of two missense mutations, S252W and P253R, on fibroblast growth factor receptor 2 (FGFR2). The molecular bases underlying differential Apert syndrome phenotypes are still poorly understood and it is unclear why cleft palate is more frequent in patients carrying the S252W mutation. Taking advantage of Apert syndrome mouse models, we performed a novel combination of morphometric, histological and immunohistochemical analyses to precisely quantify distinct palatal phenotypes in Fgfr2(+/S252W) and Fgfr2(+/P253R) mice. We localized regions of differentially altered FGF signaling and assessed local cell patterns to establish a baseline for understanding the differential effects of these two Fgfr2 mutations. Palatal suture scoring and comparative 3D shape analysis from high resolution µCT images of 120 newborn mouse skulls showed that Fgfr2(+/S252W) mice display relatively more severe palate dysmorphologies, with contracted and more separated palatal shelves, a greater tendency to fuse the maxillary-palatine sutures and aberrant development of the inter-premaxillary suture. These palatal defects are associated with suture-specific patterns of abnormal cellular proliferation, differentiation and apoptosis. The posterior region of the developing palate emerges as a potential target for therapeutic strategies in clinical management of cleft palate in Apert syndrome patients.


Assuntos
Acrocefalossindactilia/patologia , Palato/crescimento & desenvolvimento , Palato/patologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Palato/anormalidades , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo
18.
Childs Nerv Syst ; 28(9): 1471-81, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22872264

RESUMO

BACKGROUND: Craniosynostosis (CS), the premature fusion of cranial sutures, is a relatively common pediatric anomaly, occurring in isolation or as part of a syndrome. A growing number of genes with pathologic mutations have been identified for syndromic and nonsyndromic CS. The study of human sutural material obtained post-operatively is not sufficient to understand the etiology of CS, for which animal models are indispensable. DISCUSSION: The similarity of the human and murine calvarial structure, our knowledge of mouse genetics and biology, and ability to manipulate the mouse genome make the mouse the most valuable model organism for CS research. A variety of mouse mutants are available that model specific human CS mutations or have CS phenotypes. These allow characterization of the biochemical and morphological events, often embryonic, which precede suture fusion. Other vertebrate organisms have less functional genetic utility than mice, but the rat, rabbit, chick, zebrafish, and frog provide alternative systems in which to validate or contrast molecular functions relevant to CS.


Assuntos
Craniossinostoses/genética , Craniossinostoses/patologia , Modelos Animais de Doenças , Animais , Anuros , Galinhas , Humanos , Camundongos , Coelhos , Ratos , Crânio , Vertebrados/genética , Peixe-Zebra
19.
Childs Nerv Syst ; 28(9): 1505-10, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22872267

RESUMO

INTRODUCTION: Apert syndrome is one of the more clinically distinct craniosynostosis syndromes in man. It is caused by gain-of-function mutations in FGFR2, over 98% of which are the two amino acid substitution mutations S252W and P253R. FGFR2 is widely expressed throughout development, so that many tissues are adversely affected in Apert syndrome, particularly the calvarial bones, which begin to fuse during embryonic development, and the brain. DISCUSSION: Mouse models of both of these two causative mutations and a third rare splice mutation have been created and display many of the phenotypes typical of Apert syndrome. The molecular and cellular mechanisms underlying Apert phenotypes have begun to be elucidated, and proof-of-principle treatment of these phenotypes by chemical inhibitor and gene-based therapies has been demonstrated.


Assuntos
Acrocefalossindactilia , Modelos Animais de Doenças , Mutação/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Acrocefalossindactilia/genética , Acrocefalossindactilia/patologia , Acrocefalossindactilia/fisiopatologia , Animais , Genótipo , Humanos , Camundongos , Fenótipo
20.
Dev Biol ; 368(2): 283-93, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22664175

RESUMO

Coordinated growth of the skull and brain are vital to normal human development. Craniosynostosis, the premature fusion of the calvarial bones of the skull, is a relatively common pediatric disease, occurring in 1 in 2500 births, and requires significant surgical management, especially in syndromic cases. Syndromic craniosynostosis is caused by a variety of genetic lesions, most commonly by activating mutations of FGFRs 1-3, and inactivating mutations of TWIST1. In a mouse model of TWIST1 haploinsufficiency, cell mixing between the neural crest-derived frontal bone and mesoderm-derived parietal bone accompanies coronal suture fusion during embryonic development. However, the relevance of lineage mixing in craniosynostosis induced by activating FGFR mutations is unknown. Here, we demonstrate a novel mechanism of suture fusion in the Apert Fgfr2(S252W) mouse model. Using Cre/lox recombination we simultaneously induce expression of Fgfr2(S252W) and ß-galactosidase in either the neural crest or mesoderm of the skull. We show that mutation of the mesoderm alone is necessary and sufficient to cause craniosynostosis, while mutation of the neural crest is neither. The lineage border is not disrupted by aberrant cell migration during fusion. Instead, the suture mesenchyme itself remains intact and is induced to undergo osteogenesis. We eliminate postulated roles for dura mater or skull base changes in craniosynostosis. The viability of conditionally mutant mice also allows post-natal assessment of other aspects of Apert syndrome.


Assuntos
Craniossinostoses/metabolismo , Modelos Animais de Doenças , Mesoderma/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Acrocefalossindactilia/genética , Acrocefalossindactilia/metabolismo , Substituição de Aminoácidos , Animais , Animais Recém-Nascidos , Suturas Cranianas/embriologia , Suturas Cranianas/crescimento & desenvolvimento , Suturas Cranianas/metabolismo , Craniossinostoses/genética , Regulação da Expressão Gênica no Desenvolvimento , Histocitoquímica , Humanos , Mesoderma/embriologia , Mesoderma/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Crista Neural/embriologia , Crista Neural/crescimento & desenvolvimento , Crista Neural/metabolismo , Osteogênese/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...